IRMEDIATE AND	
	Roll No
	Sig. of
13/411480	

Roll	No.

 T		 	
1	ſ		
	1		l
1	1		1

Sig. of	Candidate
Sig. Oi	Candidate

Answer	Sheet	No	
		····	

Sig. of Invigilator._

CHEMISTRY HSSC-II

SECTION - A (Marks 17)

Time allowed: 25 Minutes

NOTE:

Q. 1

Section-A is compulsory and comprises pages 1-2. All parts of this section are to be answered on the question paper itself. It should be completed in the first 25 minutes and handed over to the Centre Superintendent. Deleting/overwriting Is not allowed. Do not use lead pencil.

Circle the correct option i.e. A / B / C / D. Each part carries one mark.

- (i) The decrease in ionization energy of Alkali Metals from top to bottom in a group is due to:
 - A. Shielding effect and Nuclear charge
- B. Atomic size and Nuclear charge
- C. Shielding effect and Atomic size
- D. None of these

Ca

- (ii) Which of the following reacts with Alkali to give Hydrogen gas?
 - A. Вe
- B. Ma
- C.
- D. Ba
- Borax, Colemanite and Orthoboric acid are the common minerals of: (iii)
 - A. Aluminium
- B. Boron
- C. Sodium
- D. Calcium

- In contact process the catalyst used is: (iv)
 - A. Fe,O,
- B. V,O_{ϵ}
- C. SO,
- D. Ag,O
- The decrease in oxidizing power of Halogens down the group is according to which of the following order? (v)
 - $F_{\gamma} > CI_{\gamma} > Br_{\gamma} = I_{\gamma}$

 $F_{1} > Cl_{1} = Br_{1} > I_{2}$

 $I_{\gamma} > Cl_{\gamma} > Br_{\gamma} > F_{\gamma}$ C.

Cr

- $F_1 > Cl_1 > Br_1 > l_1$ D.
- Which of the following is non-typical transition element? (vi)
 - A.
- B.

- C. Zn
- D. Fe
- Which of the following compounds reacts with HBr obeying Markownikov's rule? (vii)

Mn

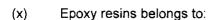
A.

$$H_2C == CH_2$$

B.

C.

D.



- (viii) In S_N1 reaction:
 - A. Retention of configuration does not take place
 - B. Inversion of configuration does not take place
 - C. Both retention and inversion of configuration take place
 - D. None of these
- The product formed on reaction of Ethanol with SOCl₂ in the presence of pyridine is: (ix)
 - A. Chloroethanol B.
- Chloroethane
- Chloroethanal
- D.

Both A and C

Page 1 of 2 (Chem)

DO NOT WRITE ANYTHING HERE



- Thermosetting polymers
- B. Thermoplastic polymers

C. Biopolymers D. None of these

Which of the following cannot be distinguished by lodoform test? (xi)

- CH₃OH and H₃C-CH₂-OH

 $CH_3Cl + KCN \xrightarrow{Alcohol} (A) \xrightarrow{H^+/H_2O} (B)$ (xii)

The end product (B) of the above reaction is:

- A. нсоон
- В. CH₃NH₂
- CH₃COOH C.
- D. CH₃OCH₃

Which of the following is NOT a Nitrogenous fertilizer? (xiii)

Ammonia

B. Urea

- C. Ammonium Nitrate
- D. Calcium Super Phosphate

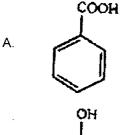
The pH range of acid rain is: (xiv)

- 7.0 6.5
- В. 6.5 - 6.0
- C. 6.0 - 5.6
- D. Less than 5.0

In which of the following compounds, the underlined carbon has sp³ Hybridization? (xv)

A
$$CH_3 - CH = CH_2$$

B. $CH_3 - \overset{\widetilde{\parallel}}{\underline{C}} -$


$$C CH_3 - \frac{H_2}{C} - CH_3$$

Total number of di-substituted products obtained from Benzene is: (xvi)

- C.
- 5

COOH

Choose the structure of carbolic acid: (xvii)

В.

D.

C.

D.

For Examiner's use only:

Total Marks:

17

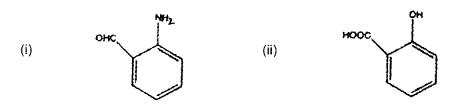
Marks Obtained:

Q.

CHEMISTRY HSSC-II

01

03


Time allowed: 2:35 Hours

Total Marks Sections B and C: 68

Sections B and C comprise pages 1-2. Answer any fourteen parts from Section 'B' and any two questions from Section 'C' on the separately provided answer book. Use supplementary answer sheet i.e. Sheet—B if required. Write your answers neatly and legibly.

SECTION - B (Marks 42)

Answ	er any	FOURTEEN parts. The answer to each part should not exceed 5 to 6 lines. (14 \times 3 =	42)
(i)	a.	ZnO is Amphoteric oxide. Justify this statement by providing two chemical reactions.	02
	b.	Describe the resemblance of Hydrogen with the elements of Group 1A of periodic table.	
		(Any two points)	01
(ii)	a.	What is Milk of Mangesia?	01
	b.	Give the chemical reactions which take place during the hardening of mortar.	02
(iii)	a.	Describe the effect of heat on Boric acid with the help of two chemical equations.	02
	b.	Write down the chemical formula of soap stone.	01
(iv)	a.	Nitrous acid (HNO ₂) behaves as oxidizing as well as reducing agent. Provide two	
	:	chemical equations showing this behaviour of HNO ₂ .	02
	b.	Complete the following reaction: $2H_{3}PO_{4} \xrightarrow{240^{o}C} () \xrightarrow{316^{o}C} ()$	01
(v)	a.	Keeping in mind the system of nomenclature of oxyacids name the following compounds	: 02
		i. HCIO (ii) HCIO ₂ (iii) HCIO ₃ (iv) HCIO ₄	
	b.	Xenon tera-fluoride can be used as fluorinating agent. Give a chemical reaction which	
		shows this behaviour.	01
(vi)	a .	Give systematic (IUPAC) names of the following complex compounds:	02
		(i) $[PtCI(NO_2)(NH_3)_4]SO_4$ (ii) $K_4[Fe(CN)_6]$	
	b.	What is the difference between Wrought Iron and Cast Iron?	01
(vii)	a.	Define functional group. Give structures of two nitrogen containing functional groups.	02
	b.	What are Heterocyclic compounds? Give structures of any one heterocyclic compound.	01
(viii)	a.	Give the structural formulae of the following compounds:	02
		(i) 4,5-Dimethyl-2-hexene (ii) Isopentane	
	b.	Which Alkene gives Formaldehyde as the only product after Ozonolysis?	01
(ix)	a.	Give IUPAC names of the following:	02

b. Give name and structure of the product of the following reaction:

 $C_6H_6 + CH_3COCI \xrightarrow{AICI_3} ?$

(x) How will you synthesize the following compounds starting from $CH_3 - CH_2 - Mg - Br$?

- Propanoic Acid a.
- 1-Propanol b.
- 2-Butanol C.

	(xi)	a.	Describe the acidic behaviour of Phenol.							02
		b.	Arran	ge the following	j in decrea	sing or	der of a	cidity:		01
			(i)	Alcohol		(ii)	Phen	ol		
			(iii)	Carboxylic a	cid	(iv)	Wate	r		
	(xii)	a.	Define	e condensation	reaction.					01
		b.	Give	chemical equat	ion which i	nvolves	the rea	action of 2 moles of Acetaldel	h yde in	
			the pr	esence of NaO	H. Also na	me the	chemic	al reaction.		02
	(xiii)	a.	What	is Glacial Aceti	ic Acid?					01
		b.	How A	Alanine can be	prepared b	y Etha	nal? Als	so give the name of the reacti	ion.	02
	(xiv)	a.	Name	e the major clas	ses of orga	anic cor	npound	ls in living cell.		01
		b.	Define	e the term lipids	S .					01
,		C.	What	are the primary	y building b	locks o	f lipids?	•		01
	(xv)	a.	What	is meant by Pr	illing of Ure	ea?				01
		b.	Why i	s cement often	called Por	tland C	ement?			02
	(xvi)	Explai	n the fo	llowing terms:						03
		a.	Bioch	emical Oxygen	Demand (BOD)				
		b.	Chem	Chemical Oxygen Demand (COD)						
	(xvii)	a.	Write down the chemical reactions involved in the preparation of Ethanol from Starch.						om Starch.	02
		b.	b. Absolute Alcohol cannot be obtained by Fermentation process. Give reason.							01
	(xviii)	a.	Give t	two applications	s of Argon.					02
		b.	Write	down the chem	nical reaction	ons of 1	Tin with:			01
			(i)	HNO _{3(dil)}		(ii)	HNO	3(conc)		
	(xix)	Why d	o the tra	ansition metals	give colou	red cor	npound	s. Explain with an example.		03
					SECTI	<u>ON – C</u>	(Marks	s 26)		
Note:	Α	ttempt	any TW	O questions.	All questic	ons car	ry equa	al marks.	(2 x 13	= 26)
Q. 3	a.	Point o	out the f	factors causing	peculiar be	ehavior	of Fluo	rine.		04
	b.	Explai	n sacrifi	icial corrosion.						04
	c.	Descri	be the p	preparation of S	Sodium (Na	a) meta	, by DO	OWN'S CELL.		05
Q. 4	a.	Descri	be the p	oreparation of E	Ethyne by Ł	(olbe's	Electrol	y s is.		04
	b.	Point o	oint out the differences between S _N 1 and S _N 2 reactions.							06
	C.	Write	he nam	es and structur	res of the N	fonome	ers of the	e following Polymers:		03
		(i)	PVC	(ii)	Nylon-	6,6	(iii)	Polystyrene		
Q. 5	a.	Explai	n the fo	llowing terms:						06
		(i)	Hydro	sphere						
		(ii)	Incine	eration of the M	unicipal So	lid Was	ste			
	b.	Write	down ar	ny three essent	ial qualities	of a go	ood Feri	tilizer.		03
	C.	Explai	n Additio	on Polymerizati	ion with me	echanis	m.			04

---- 2HA 1509 (L) ----

Page 2 of 2 (Chem)

STATE DATE AND THE STATE OF THE	Roll No.	
THE REPORT OF THE PARTY OF THE	Sig. of Candidate.	

Answer Sheet No	
Sig. of Invigilator.	•

IOTE:	Section—A is compulsory and comprises pages 1—2. All parts of this section are to be answered on the question paper itself. It should be completed in the first 25 minutes and handed over to the Centre Superintendent. Deleting/overwriting is not allowed. Do not use lead pencil.										
Q. 1	Circl	e the co	rrect option i.e	. A / B / C	: / D. Each par	t carries	one mark.				
	(i)	Oxida	ation state of the	elements	s of group IA is:						
		A.	+1	B.	-1	C.	0	D.	Both A and B		
	(ii)	Plast	er of paris is form	med by th	e removal of:						
		A.	Two quarter	of the wat	er of crystalliza	tion from	Gypsum				
		B.	Three quarte	r of the w	ater of crystalliz	ation fro	m Gypsum				
		C.	Two quarter	of the wat	er of crystalliza	tion from	Soda Ash				
		D.	Three quarte	r of the w	ater of crystalliz	ation of	Soda Ash				
	(iii)	Borax	is the sodium s	salt of:							
		A.	Tetraboric Ad	id		B.	Metaborio	Acid			
		C.	Pyroboric Ac	id		D.	Orthoborio	c Acid			
	(iv)	Aqua	ua Regia is prepared by mixing:								
		A.	One volume	of HCI an	d three volume	of HNO ₃	;				
		B.	Three volume of HCl and one volume of HNO₃								
		C.	One volume	of HCI an	d three volume	of H₂SO	4				
		D.	Three volume	e of HCI a	nd one volume	of H ₂ SO	4				
	(v)	Whic	h of the following	g can rea	ct directly with h	Noble ga	ses?				
		A.	Fluorine			B.	Chlorine				
		C.	Bromine			D.	lodine				
	(vi)	The o	coordination nun	nber of Fe	in $K_4[Fe(CN)_6]$	is:					
		A.	4	B.	5	C.	6	D.	7		
	(vii)	n-Per	ntane and 2,2-di	methylpro	ppane are:						
		A.	Chain isome	rs		B.	Position is	somers			
		C.	Functional gr	oup isom	ers	D.	Metamers	3			
	(viii)	Whic	h of the following	g does N 0	OT show Acidic	nature?					
		Α.	Acetylene			B.	Vinyl Ace	•			
		C.	Divinyl Acety	lene		D.	Ethyl Ace	tylene			
	(ix)	The I	Meta Directing g	roups:							
		A.	Increase the	chemical	reactivity of Be	nzene					
		В.	Decrease the	e chemica	I reactivity of B	enzene					
		C.	Do not affect	the chem	nical reactivity o	f Benzer	ne				
		D.	Sometimes in	ncrease s	ometimes decre	ease the	chemical rea	activity of Be	enzene		
	(x)	The f	irst step is same	in which	of the following	j :					
	, ,	Α.	E1 and E2 re		•	В.	S _N 1 and S	S _N 2 reaction	s		

D.

 $S_{N}\mathbf{1}$ and E2 reactions

C.

E1 and S_N1 reactions

DO NOT WRITE ANYTHING HERE

A. C.	ic Rubber is made by Polymerization of: Chloroform Divinylacetylene	B. D. Total N	Acetylene Chloroprene					
Synthet A.	ic Rubber is made by Polymerization of: Chloroform	В.	Acetylene					
Synthet A.	ic Rubber is made by Polymerization of: Chloroform	В.	Acetylene					
Synthet A.	ic Rubber is made by Polymerization of: Chloroform	В.	Acetylene					
	ic Rubber is made by Polymerization of:	Б.	100,000 Gzarie Malesales					
C.	10,000 Ozone molecules	D .	100,000 Gzene meledales					
_	10,000 Ozone molecules	n	100,000 Ozone molecules					
A.	100 Ozone molecules	B.	1,000 Ozone molecules					
A single	Chloride free radical can destroy up to:							
C.	Poplar	D.	Rice Straw					
Α.	Cotton	B.	Bagasse					
Which v	voody material is used for the manufactu	iring of F	Paper Pulp?					
C.	Amino acids	D.	Esters					
A.	lpha -D-Glucose	B.	eta -D-glucose					
	·							
C.	·	D.	Benzoic Acid					
Α.	1,2-Benzendicarboxylic acid	B.	1,3-Benzendicarboxylic acid					
Phthalic	acid is also named as:							
C.	О CH ₃ —С—ОН	D.	CH_3 — C — C_2H_5					
			СН3—С—СН3					
	-		0					
	•							
	·							
	·							
	•							
The correct decreasing order of the relative acidic strength of Alcohol, Phenol. Water and								
	Carboxy A. B. C. D. Which of A. C. Starch i A. C. Which v A. C. A. C. A. C.	Carboxylic acid is: A. Carboxylic acid>Phenol>Water>Alcohol B. Alcohol>Water>Phenol>Carboxylic acid C. Phenol>Carboxylic acid>Water>Alcohol D. Water>Carboxylic acid>Phenol>Alcohol Which of the following will give Positive Tollen's O. CH ₃ ——C——OH Phthalic acid is also named as: A. 1,2-Benzendicarboxylic acid C. 1,4-Benzendicarboxylic acid Starch is the polymer of: A. α-D-Glucose C. Amino acids Which woody material is used for the manufactural Control C. Poplar A single Chloride free radical can destroy up to: A. 100 Ozone molecules	Carboxylic acid is: A. Carboxylic acid>Phenol>Water>Alcohol B. Alcohol>Water>Phenol>Carboxylic acid C. Phenol>Carboxylic acid>Water>Alcohol D. Water>Carboxylic acid>Phenol>Alcohol Which of the following will give Positive Tollen's test? A. CH ₃ —C—H B. C. CH ₃ —C—OH D. Phthalic acid is also named as: A. 1,2-Benzendicarboxylic acid B. C. 1,4-Benzendicarboxylic acid C. 1,4-Benzendicarboxylic acid D. Starch is the polymer of: A. α -D-Glucose B. C. Amino acids D. Which woody material is used for the manufacturing of FA. Cotton B. C. Poplar D. A single Chloride free radical can destroy up to: A. 100 Ozone molecules B.					

---- 2HA 1509 (ON) -----

Q. 2

(i)

CHEMISTRY HSSC-II

03

01

01

Time allowed: 2:35 Hours

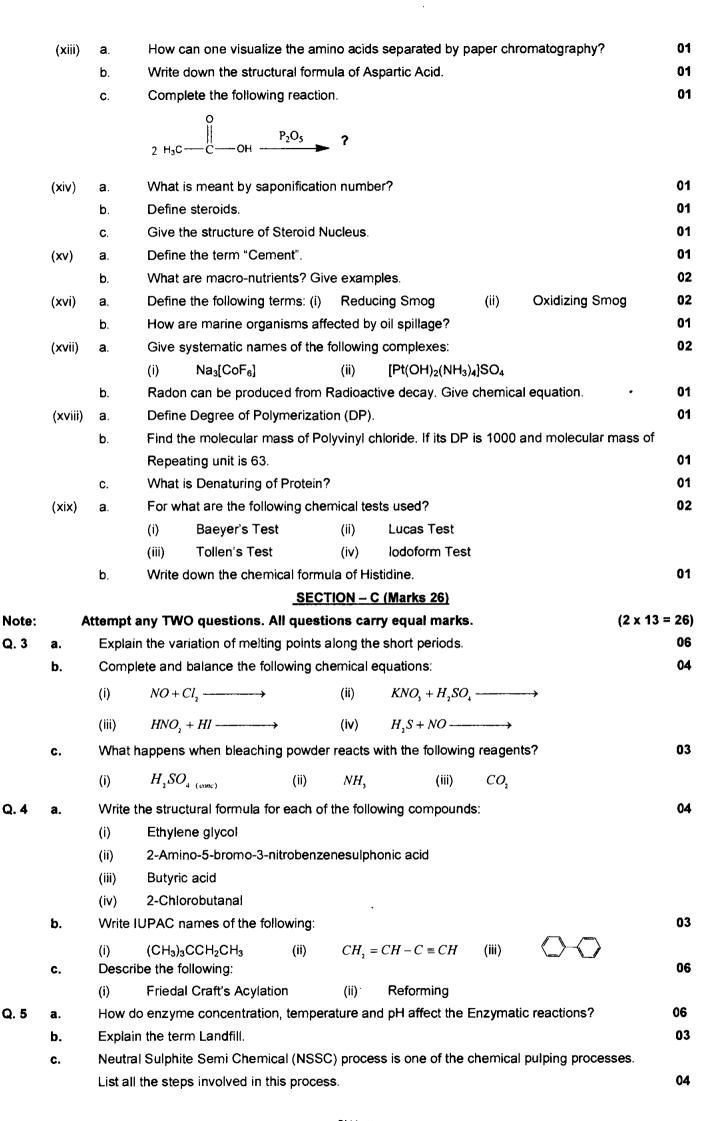
C.

Total Marks Sections B and C: 68

Sections B and C comprise pages 1 - 2. Answer any fourteen parts from Section 'B' and any two questions from Section 'C' on the separately provided answer book. Use supplementary answer sheet i.e. Sheet-B if required. Write your answers neatly and legibly.

SECTION - B (Marks 42)

Answ	ver any	FOURTEEN parts. The answer to each part should not exceed 5 to 6 lines.	(14 x 3 = 42)
(i)	а	What is Hydration Energy? Explain with an example	02


- a. 02 What is Hydration Energy? Explain with an example.
- 01 b. Why is PbCl₂ mainly ionic and PbCl₄ mainly covalent in nature?
- (ii)Complete the following reactions:
 - $4LiNO_{3(s)} \xrightarrow{Heat}$ a.
 - $2Mg(NO_3)_{2(s)} \xrightarrow{Heat}$ b.
- $2NaNO_{3(x)} \xrightarrow{Heat}$ C. (iii) а The Aluminium is said to be corrosion free. Briefly describe this behaviour. 02 01 Point out the use of Boric Acid in medicine field. b
- Ortho Phosphoric Acid is Tri-Basic Acid. Justify this statement by providing chemical evidences. (iv) 03
- Arrange the following according to the increasing acidic strength also give reason. (v) 02 HCIO, HCIO₂, HCIO₃, HCIO₄
 - b. Why does the solubility of noble gases in H₂O increase from top to bottom in a group of periodic table.
- (vi) What are Chelates? Give one example. 02 a.
- b. Complete the following reaction $4KMnO_1 + 4KOH \longrightarrow$? 01
- What is the purpose of Cracking? (vii) a. 01 b Give the name of possible compounds obtained after cracking of n-Hexadecane. 01
 - Give the structure of Imino group. 01 С
- 01 (viii) Mustard gas can be produced from Ethene. Provide chemical equation. a.
 - Give the product formed in the following reaction: 01 b

$$H_{3}C - C = C - CH_{3} \xrightarrow{Catalyst} ?$$

Give IUPAC name of the following: C.

- Arrange the following according to the increasing order of reactivity towards (ix)a. electrophililic substitution reaction and also justify the reactivity order by giving
- valid reason: 03 Phenol (ii) Benzaldehyde (iii) Benzene
- 01 (x)a. What is Grignard's reagent? b. How can Grignard's reagent be prepared? 01
- How can ethane be prepared from Grignard's reagent? 01
- 03 How does ethyl alcohol react with the following? (xi) SOCI H₂SO_{4(conc.)} at180°C Na a.
- 01 (xii) a. How does Formaldehyde react with NaHSO₃?
- 01 Give two uses of Acetaldehyde in medical field. b

